

MJC 4 (Physiology)

Osmoregulation

Osmolality and Osmotic Balance

Water in an animal's body is distributed between the intracellular and extracellular compartments. In order to maintain osmotic balance, the extracellular compartment of an animal's body (including its blood plasma) must be able to take water from its environment or to excrete excess water into its environment. Inorganic ions must also be exchanged between the extracellular body fluids and the external environment to maintain homeostasis. Such exchanges of water and electrolytes between the body and the external environment occur across specialized epithelial cells and, in most vertebrates, through a filtration process in the kidneys.

Most vertebrates maintain homeostasis in regard to the total solute concentration of their extracellular fluids and in regard to the concentration of specific inorganic ions. Sodium (Na^+) is the major cation in extracellular fluids, and chloride (Cl^-) is the major anion. The divalent cations, calcium (Ca^{++}) and magnesium (Mg^{++}), as well as other ions, also have important functions and must be maintained at their proper concentrations.

Osmolality and Osmotic Pressure

Osmosis is the diffusion of water across a membrane, and it always occurs from a more dilute solution (with a lower solute concentration) to a less dilute solution (with a higher solute concentration). Because the total solute concentration of a solution determines its osmotic behavior, the total moles of solute per kilogram of water is expressed as the **osmolality** of the solution. Solutions that have the same osmolality are *isosmotic*. A solution with a lower or higher osmolality than another is called *hypoosmotic* or *hyperosmotic*, respectively.

If one solution is hyperosmotic compared with another, and if the two solutions are separated by a semipermeable membrane, water may move by osmosis from the more dilute solution to the hyperosmotic one. In this case, the hyperosmotic solution is also **hypertonic** ("higher strength") compared with the other solution, and it has a higher osmotic pressure. The **osmotic pressure** of a solution is a measure of its tendency to take in water by osmosis. A cell placed in a hypertonic solution, which has a higher osmotic pressure than the cell cytoplasm, will lose water to the surrounding solution and shrink. A cell placed in a **hypotonic** solution, in contrast, will gain water and expand. If a cell is placed in an isosmotic solution, there may be no net water movement. In this case, the isosmotic solution can also be said to be **isotonic**. Isotonic solutions such as normal saline and 5% dextrose are used in medical care to bathe exposed tissues and to be given as intravenous fluids.

Osmoconformers and Osmoregulators

Most marine invertebrates are **osmoconformers**; the osmolality of their body fluids is the same as that of seawater (although the concentrations of particular solutes, such as magnesium ion, are not equal). Because the extracellular fluids are isotonic to seawater, there is no osmotic gradient and no tendency for water to leave or enter the body. Therefore, osmoconformers are in osmotic equilibrium with their environment. Among the vertebrates, only the primitive hagfish are strict osmoconformers. The sharks and their relatives in the class Chondrichthyes (cartilaginous fish) are also isotonic to seawater, even though their blood level of NaCl is lower than that of seawater; the difference in total osmolality is made up by retaining urea at a high concentration in their blood plasma.

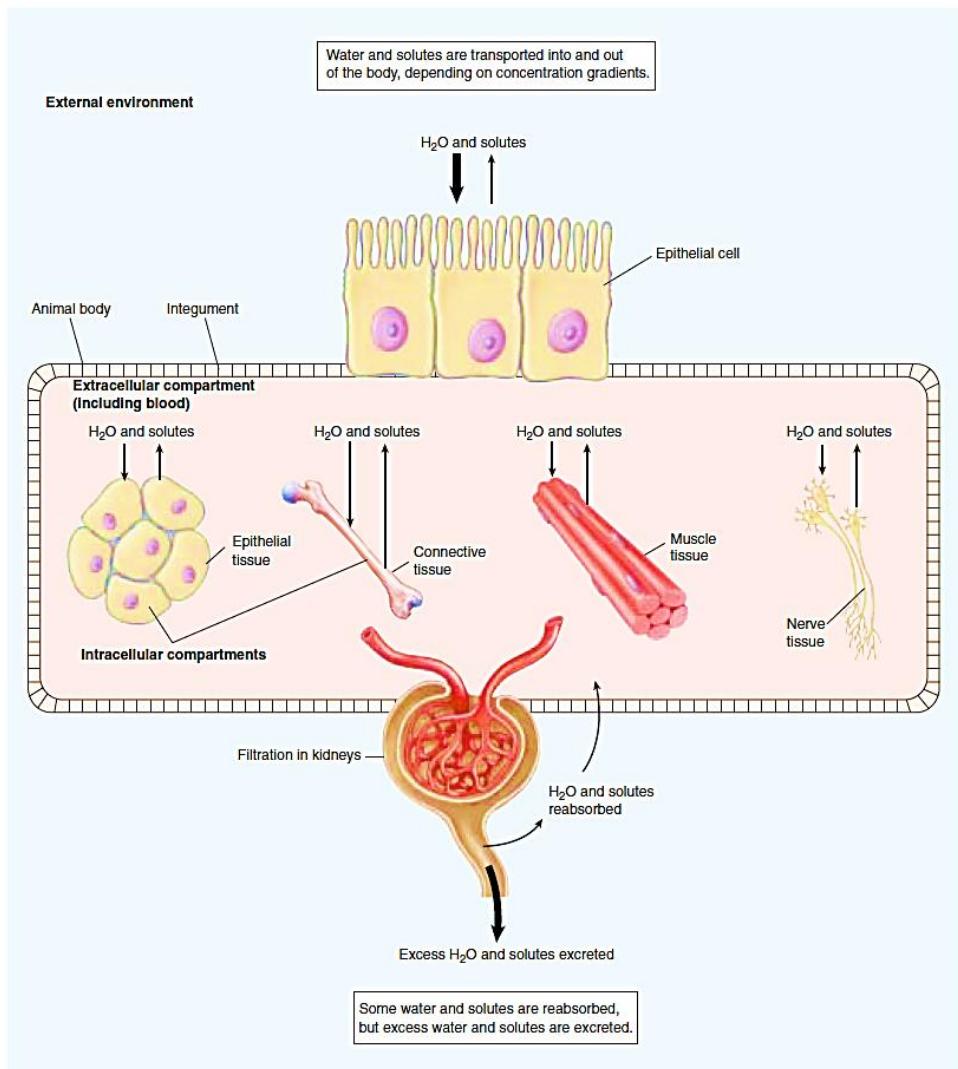


FIGURE 58.8

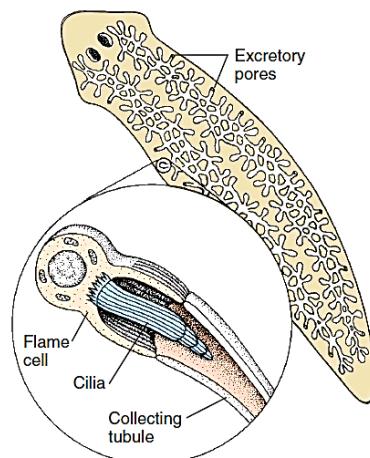
The interaction between intracellular and extracellular compartments of the body and the external environment. Water can be taken in from the environment or lost to the environment. Exchanges of water and solutes between the extracellular fluids of the body and the environment occur across transport epithelia, and water and solutes can be filtered out of the blood by the kidneys. Overall, the amount of water and solutes that enters and leaves the body must be balanced in order to maintain homeostasis.

All other vertebrates are osmoregulators—that is, animals that maintain a relatively constant blood osmolality despite the different concentration in the surrounding environment. The maintenance of a relatively constant body fluid osmolality has permitted vertebrates to exploit a wide variety of ecological niches. Achieving this constancy, however, requires continuous regulation. Freshwater vertebrates have a much higher solute concentration in their body fluids than that of the surrounding water. In other words, they are hypertonic to their environment. Because of their higher osmotic pressure, water tends to enter their bodies. Consequently, they must prevent water from entering their bodies as much as possible and eliminate the excess water that does enter. In addition, they tend to lose inorganic ions to their environment and so must actively transport these ions back into their bodies.

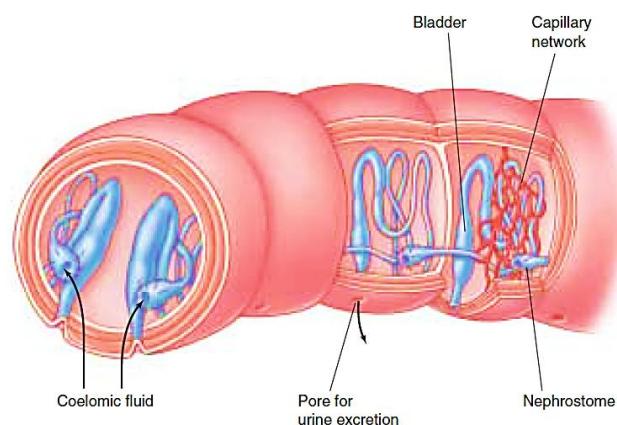
In contrast, most marine vertebrates are hypotonic to their environment; their body fluids have only about one third the osmolality of the surrounding seawater. These animals are therefore in danger of losing water by osmosis and must retain water to prevent dehydration. They do this by drinking seawater and eliminating the excess ions through their kidneys and gills. The body fluids of terrestrial vertebrates have a higher concentration of water than does the air surrounding them. Therefore, they tend to lose water to the air by evaporation from the skin

and lungs. All reptiles, birds, and mammals, as well as amphibians during the time when they live on land, face this problem. These vertebrates have evolved excretory systems that help them retain water.

Osmoregulatory Organs


Animals have evolved a variety of mechanisms to cope with problems of water balance. In many animals, the removal of water or salts from the body is coupled with the removal of metabolic wastes through the excretory system. Protists employ contractile vacuoles for this purpose, as do sponges. Other multicellular animals have a system of excretory tubules (little tubes) that expel fluid and wastes from the body.

In flatworms, these tubules are called *protonephridia*, and they branch throughout the body into bulblike **flame cells**. While these simple excretory structures open to the outside of the body, they do not open to the inside of the body. Rather, cilia within the flame cells must draw in fluid from the body. Water and metabolites are then reabsorbed, and the substances to be excreted are expelled through excretory pores.


Other invertebrates have a system of tubules that open both to the inside and to the outside of the body. In the earthworm, these tubules are known as *metanephridia*. The metanephridia obtain fluid from the body cavity through a process of filtration into funnel shaped structures

called *nephrostomes*. The term *filtration* is used because the fluid is formed under pressure and passes through small openings, so that molecules larger than a certain size are excluded. This filtered fluid is isotonic to the fluid in the coelom, but as it passes through the tubules of the metanephridia, NaCl is removed by active transport processes. A general term for transport out of the tubule and into the surrounding body fluids is *reabsorption*. Because salt is reabsorbed from the filtrate, the urine

excreted is more dilute than the body fluids (is hypotonic). The kidneys of mollusks and the excretory organs of crustaceans (called *antennal glands*) also produce urine by filtration and reclaim certain ions by reabsorption.

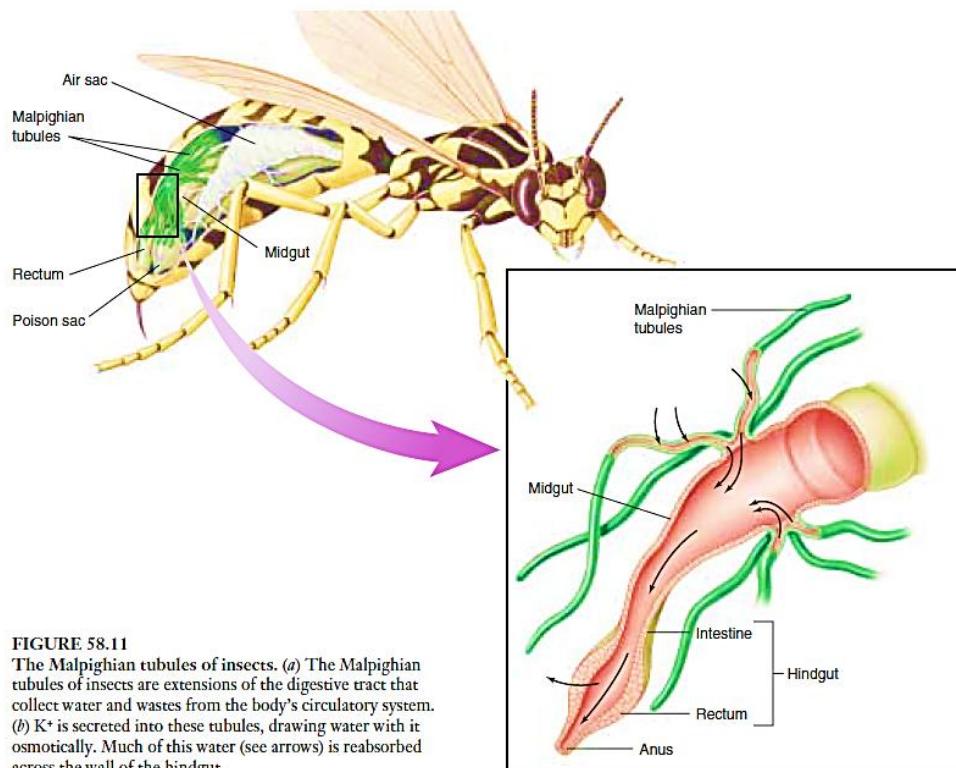


FIGURE 58.9
The protonephridia of flatworms. A branching system of tubules, bulblike flame cells, and excretory pores make up the protonephridia of flatworms. Cilia inside the flame cells draw in fluids from the body by their beating action. Substances are then expelled through pores which open to the outside of the body.

FIGURE 58.10
The metanephridia of annelids. Most invertebrates, such as the annelid shown here, have metanephridia. These consist of tubules that receive a filtrate of coelomic fluid, which enters the funnel-like nephrostomes. Salt can be reabsorbed from these tubules, and the fluid that remains, urine, is released from pores into the external environment.

The excretory organs in insects are the Malpighian tubules, extensions of the digestive tract that branch off anterior to the hindgut. Urine is not formed by filtration in these tubules, because there is no pressure difference between the blood in the body cavity and the tubule. Instead, waste molecules and potassium (K^+) ions are secreted into the tubules by active transport. Secretion is the opposite of reabsorption—ions or molecules are transported from the body fluid into the tubule. The secretion of K^+ creates an osmotic gradient that causes water to enter the tubules by osmosis from the body's open circulatory system. Most of the water and K^+ is then reabsorbed into the circulatory system through the epithelium of the hindgut, leaving only small molecules and waste products to be excreted from the rectum along with feces. Malpighian tubules thus provide a very efficient means of water conservation.

FIGURE 58.11
The Malpighian tubules of insects. (a) The Malpighian tubules of insects are extensions of the digestive tract that collect water and wastes from the body's circulatory system. (b) K^+ is secreted into these tubules, drawing water with it osmotically. Much of this water (see arrows) is reabsorbed across the wall of the hindgut.

The kidneys of vertebrates, unlike the Malpighian tubules of insects, create a tubular fluid by filtration of the blood under pressure. In addition to containing waste products and water, the filtrate contains many small molecules that are of value to the animal, including glucose, amino acids, and vitamins. These molecules and most of the water are reabsorbed from the tubules into the blood, while wastes remain in the filtrate. Additional wastes may be secreted by the tubules and added to the filtrate, and the final waste product, urine, is eliminated from the body. It may seem odd that the vertebrate kidney should filter out almost everything from blood plasma (except proteins, which are too large to be filtered) and then spend energy to take back or reabsorb what the body needs. But selective reabsorption provides great flexibility, because various vertebrate groups have evolved the ability to reabsorb different molecules that are especially valuable in particular habitats. This flexibility is a key factor underlying the successful colonization of many diverse environments by the vertebrates.